DEEP LEARNING FOR COMPUTER VISION

Summer Seminar UPC TelecomBCN, 4 - 8 July 2016

Instructors

Giró-i-Nieto

Kevin

McGuinness

Organizers

+ info: TelecomBCN.DeepLearning.Barcelona

Day 1 Lecture 2 Classification

Image Classification

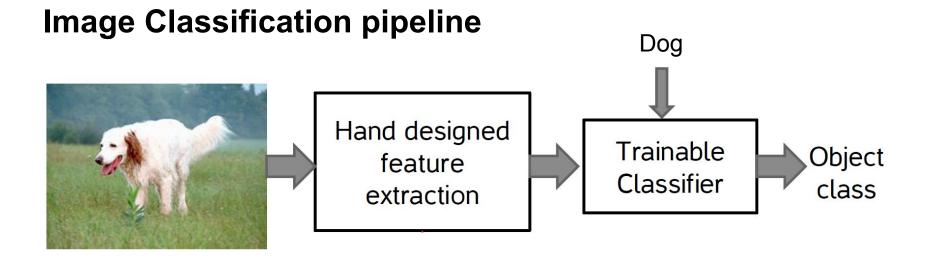
Set of predefined categories [eg: table, apple, dog, giraffe] Binary classification [1, 0]

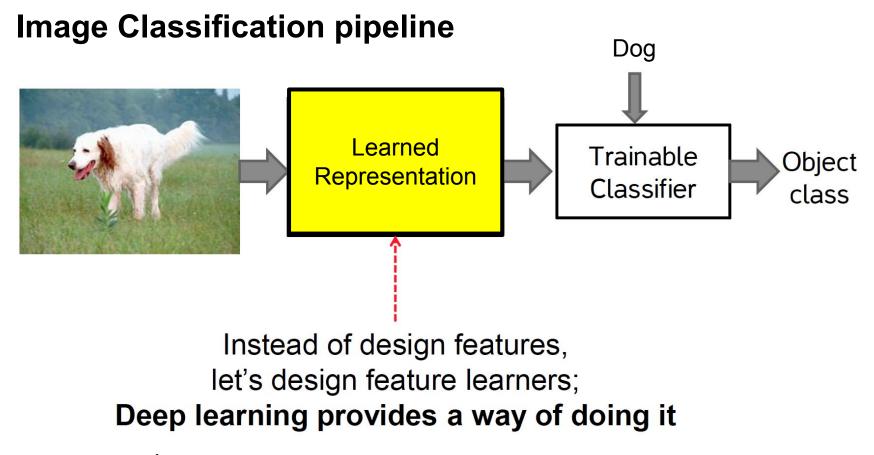
DOG

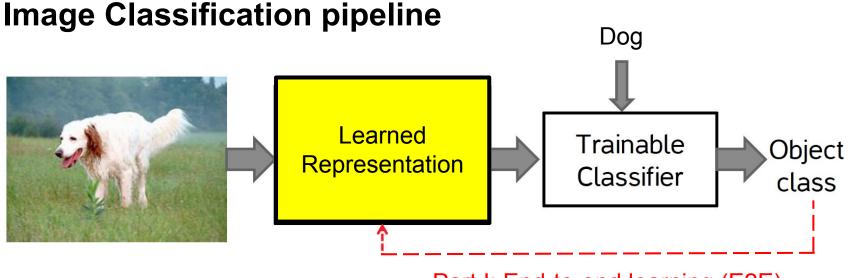
Image Classification

[[[132	131	118]
	[164	163	153]
	[209	208	200]
	•••,		
	[247	249	251]
	[246	248	251]
	[246	248	251]]
[[147	148	136]
	[187	186	178]
	[226	226	219]
	•••,		
	[247	249	251]
			251]
	[246	248	251]]
ſ	[158	159	149]
			198]
	100		232]
	,		
	[247	249	251]
	[246	248	251]
			251]]

...,







Part I: End-to-end learning (E2E)

Image Classification: Example Datasets

0000000000000000000 111/1/11/11/ 222222222222222 **3333**3333333**3333**33 4444444444444 666666666666666666 777177777777777 88888888888888888888 999993498999

training set of 60,000 examples

test set of 10,000 examples

THE MNIST DATABASE

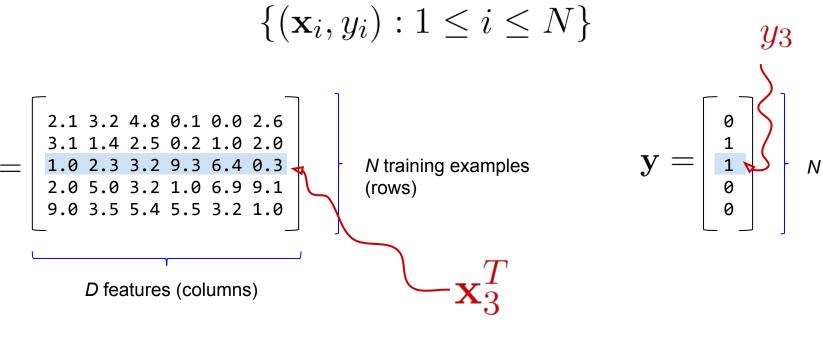
of handwritten digits

Yann LeCun, Courant Institute, NYU Corinna Cortes, Google Labs, New York Christopher J.C. Burges, Microsoft Research, Redmond

Image Classification: Example Datasets

20 classes

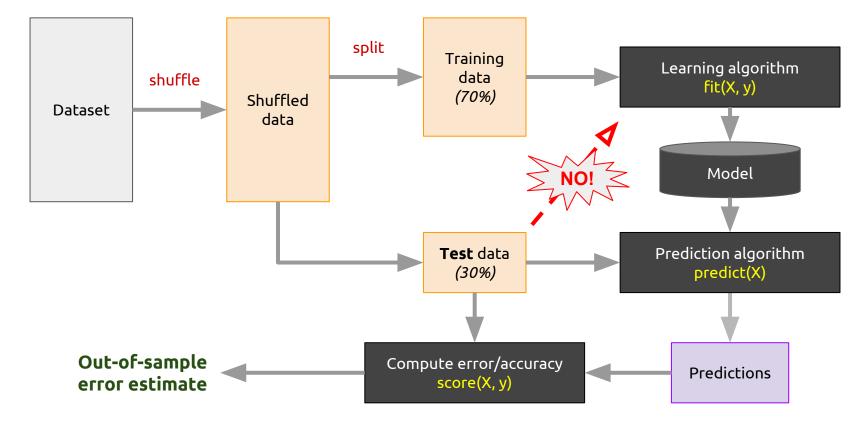
Training set



 $X \in \mathbb{R}^{N \times D}$

 $\mathbf{y} \in \{0,1\}^N$

Train/Test Splits



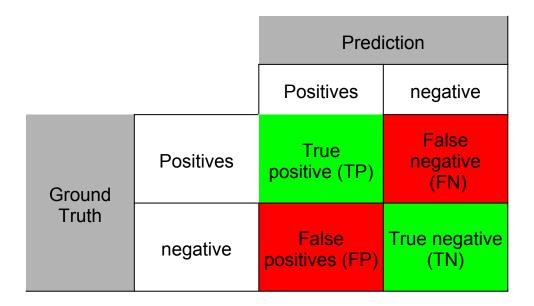
<u>Confusion matrices</u> provide a by-class comparison between the results of the automatic classifications with ground truth annotations.

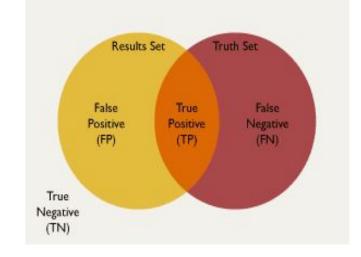
		Automatic						Automatic		
		class1	class2	class3				class1	class2	class3
Manual	class1	12	1	0			class1	100%	0%	0%
	class2	3	13	0	Manual	class2	0%	100%	0%	
	class3	0	0	20		class3	0%	0%	100%	

Correct classifications appear in the <u>diagonal</u>, while the rest of cells correspond to errors.

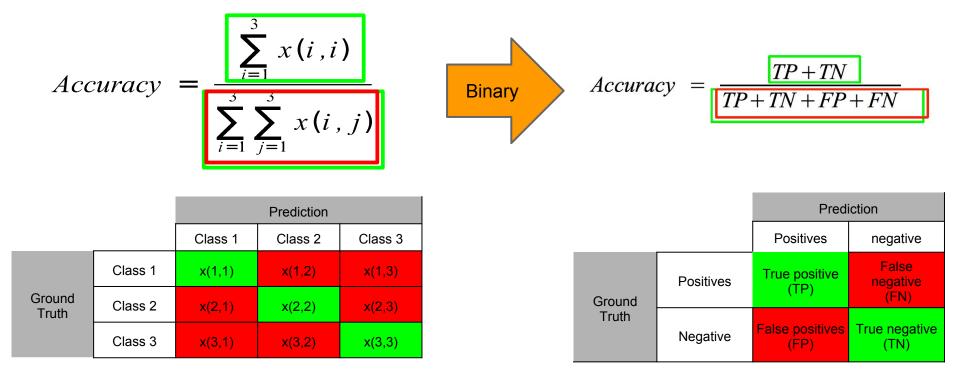
		Prediction		
		Class 1	Class 2	Class 3
Ground Truth	Class 1	x(1,1)	x(1,2)	x(1,3)
	Class 2	x(2,1)	x(2,2)	x(2,3)
	Class 3	x(3,1)	x(3,2)	x(3,3)

Special case: Binary classifiers in terms of "Positive" vs "Negative".



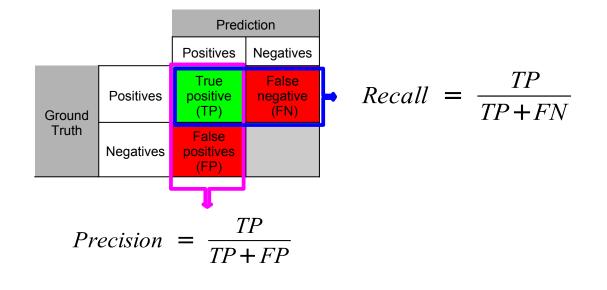


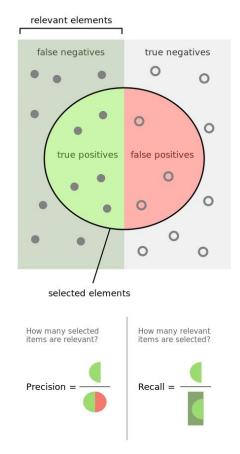
The <u>"accuracy"</u> measures the proportion of correct classifications, not distinguishing between classes.



Given a reference class, its <u>Precision (P)</u> and <u>Recall (R)</u> are complementary measures of relevance.

Example: Relevant class is "Positive" in a binary classifier.



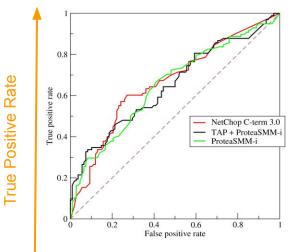


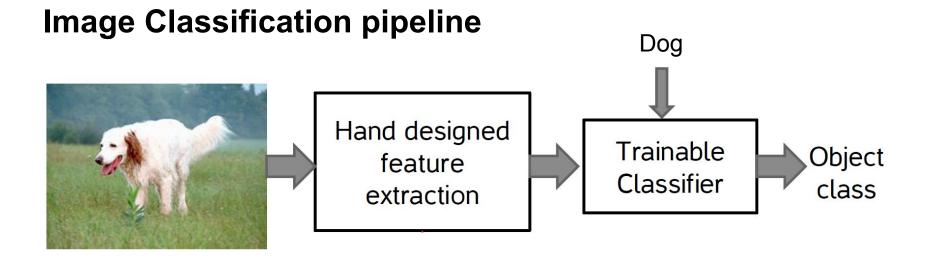
"Precisionrecall" by Walber - Own work. Licensed under Creative Commons Attribution-Share Alike 4.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Precisionrecall. svg#mediaviewer/File:Precisionrecall.svg

Binary classification results often <u>depend from a parameter</u> (eg. decision threshold) whose value directly impacts precision and recall.

For this reason, in many cases a <u>Receiver Operating Curve</u> (ROC curve) is provided as a result.

True Positive Rate =
$$\frac{TP}{TP + FN}$$
 = Recall = Sensitivity
False Positive Rate = $\frac{FP}{TP + FN}$ = 1 - specificity

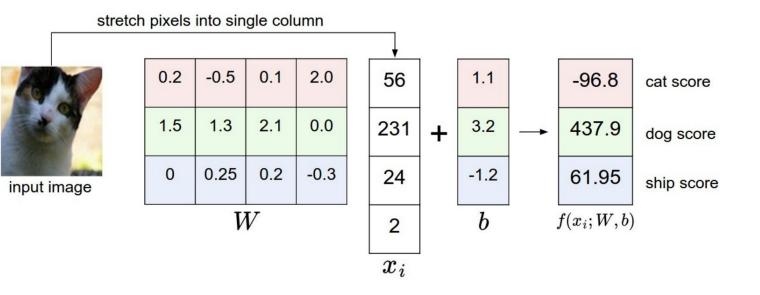




Linear Models

Mapping function to predict a score for the class label

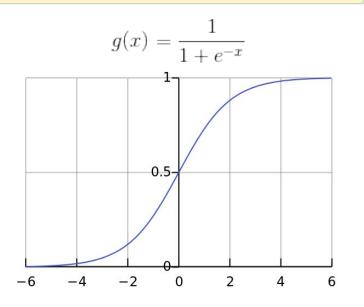
$$f(x, w) = (w^T x + b)$$



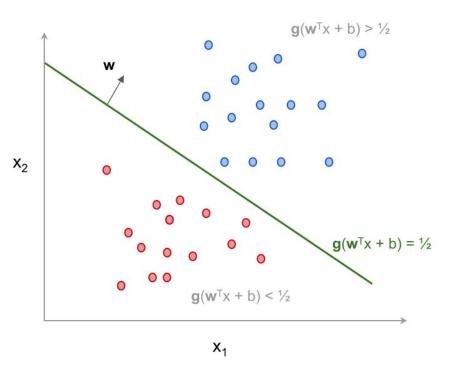
Sigmoid

Activation function: Turn score into probabilities

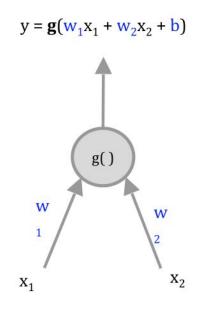
$$f(x, w) = g(w^Tx + b)$$

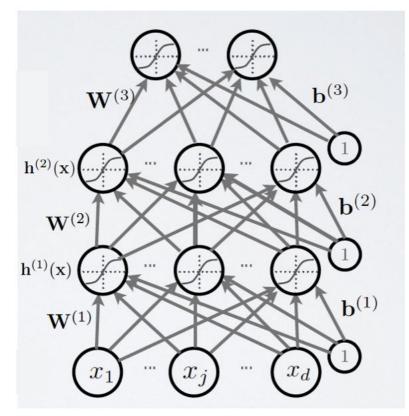


Logistic Regression



Neuron





Slide Credit: Hugo Laroche NN course

Data hygiene

Split your dataset into train and test at the very start

• Usually good practice to shuffle data (exception: time series)

Do not look at test data (data snooping)!

• Lock it away at the start to prevent contamination

NB: Never ever train on the test data!

- You have no way to estimate error if you do
- Your model could easily overfit the test data and have poor generalization, you have no way of knowing without test data
- Model may fail in production