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Learning 

Purely Supervised 
Typically Backpropagation + Stochastic Gradient Descent (SGD) 
Good when there are lots of labeled data 

Layer-wise Unsupervised + Supervised classifier 
Train each layer in sequence, using regularized auto-encoders or Restricted Boltzmann Machines 
(RBM) 
Hold the feature extractor, on top train linear classifier on features 
Good when labeled data is scarce but there are lots of unlabeled data 

Layer-wise Unsupervised + Supervised Backprop 
Train each layer in sequence 
Backprop through the whole system 
Good when learning problem is very difficult 

Slide Credit: Lecun 



From Lecture 3 
L Hidden Layers 
Hidden pre-activation (k>0) 

Hidden activation (k=1,…L) 

Output activation (k=L+1) 

€ 

a(k+1)(x) = b(k ) +W(k )h(k )(x)

! 

h(k )(x) = g(a(k )(x))

! 

h(L+1)(x) = o(a(L+1)(x)) = f(x)

€ 

h(1)(x) = x

Figure Credit: Hugo Laroche NN course 
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o(a) = softmax(a) =
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exp(ac )c

"
...

exp(aC )
exp(ac )c

"

# 

$ 

% 
% 

& 

' 

( 
( 

T



Backpropagation algorithm 

The output of the Network gives class scores that depens on the input     
and the parameters  

•  Define a loss function that quantifies our unhappiness with the 
scores across the training data. 

•  Come up with a way of efficiently finding the parameters that 
minimize the loss function (optimization) 

€ 

f (x) = h(L+1)(x) = o(a(L+1)(x)) = o(b(L ) +W(L )h(L )(x))



Probability Class given an input 
(softmax) 

Minimize the loss (plus some 
regularization term) w.r.t. Parameters 

over the whole training set. 

Loss function; e.g., negative log-
likelihood (good for classification) 
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p(ck =1x) =
exp(ak )
exp(ac )c

∑

€ 

L(x,y;W) = − y j log(p(c j x))j
∑ +

λ
2
W 2

2
€ 

W* = argminθ L(xn,yn;W)
j

∑
€ 

L(x,y;W) = − y j log(p(c j x))j
∑

Regularization term (L2 Norm) 
aka as weight decay 

Figure Credit: Kevin McGuiness 

Forward Pass 



Backpropagation algorithm 
•  We need a way to fit the model to data: find parameters (W(k), b(k)) of the 

network that (locally) minimize the loss function. 
•  We can use stochastic gradient descent. Or better yet, mini-batch 

stochastic gradient descent. 
•  To do this, we need to find the gradient of the loss function with respect to 

all the parameters of the model (W(k), b(k)) 
•  These can be found using the chain rule of differentiation.  
•  The calculations reveal that the gradient wrt. the parameters in layer k only 

depends on the error from the above layer and the output from the layer 
below.  

•  This means that the gradients for each layer can be computed iteratively, 
starting at the last layer and propagating the error back through the network. 
This is known as the backpropagation algorithm.  

Slide Credit: Kevin McGuiness 



1. Find the error in the top layer: 3. Backpropagate error to layer below 2. Compute weight updates 
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Figure Credit: Kevin McGuiness 

Backward Pass 



Optimization 
Stochastic Gradient Descent 

Stochastic Gradient Descent with momentum 

Stochastic Gradient Descent with L2 regularization 
€ 

W← ⎯ ⎯ W −ηΔ

Δ← ⎯ ⎯ 0.9Δ +
∂L
∂W

€ 

W← ⎯ ⎯ W −η
∂L
∂W

€ 

W← ⎯ ⎯ W −η
∂L
∂W

− λW
http://cs231n.github.io/optimization-1/  

http://cs231n.github.io/optimization-2/  

€ 

η : learning rate 

€ 

λ : weight decay 
Recommended lectures: 


