DEEP LEARNING FOR COMPUTER VISION

Summer Seminar UPC TelecomBCN, 4 - 8 July 2016

Instructors

Organizers

Eva

Kevir

McGuinness

+ info: TelecomBCN.DeepLearning.Barcelona

Day 1 Lecture 4 Backward Propagation

UNIVERSITAT POLITÈCNICA DE CATALUNYA **BARCELONATECH Department of Signal Theory** and Communications

Image Processing Group

Learning

Purely Supervised

Typically Backpropagation + Stochastic Gradient Descent (SGD) *Good when there are lots of labeled data*

Layer-wise Unsupervised + Supervised classifier

Train each layer in sequence, using regularized auto-encoders or Restricted Boltzmann Machines (RBM)

Hold the feature extractor, on top train linear classifier on features *Good when labeled data is scarce but there are lots of unlabeled data*

Layer-wise Unsupervised + Supervised Backprop

Train each layer in sequence Backprop through the whole system *Good when learning problem is very difficult*

Slide Credit: Lecun

From Lecture 3

Figure Credit: Hugo Laroche NN course

Backpropagation algorithm

The output of the Network gives class **scores** that depens on the input and the parameters

$$
f(\mathbf{x}) = \mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{o}(\mathbf{b}^{(L)} + \mathbf{W}^{(L)}\mathbf{h}^{(L)}(\mathbf{x}))
$$

- Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function (**optimization**)

Backpropagation algorithm

- We need a way to fit the model to data: find parameters $(\mathbf{W}^{(k)}, \mathbf{b}^{(k)})$ of the network that (locally) minimize the loss function.
- We can use **stochastic gradient descent**. Or better yet, mini-batch stochastic gradient descent.
- To do this, we need to find the gradient of the loss function with respect to all the parameters of the model $(W^{(k)}, B^{(k)})$
- These can be found using the **chain rule** of differentiation.
- The calculations reveal that the gradient wrt. the parameters in layer k only depends on the error from the above layer and the output from the layer below.
- This means that the gradients for each layer can be computed iteratively, starting at the last layer and propagating the error back through the network. This is known as the **backpropagation** algorithm.

Slide Credit: Kevin McGuiness

1. Find the error in the top layer:

2. Compute weight updates

 $\delta_K = \frac{\partial L}{\partial \alpha}$ ∂ a_K $\delta_K = \frac{\partial L}{\partial h}$ $\partial h_{\scriptscriptstyle{K}}$ ∂ h _K $∂a_K$ $\delta_K = \frac{\partial L}{\partial h}$ $\partial h_{\scriptscriptstyle{K}}$ • $g'(a_K)$

Figure Credit: Kevin McGuiness

$$
\frac{\partial L}{\partial W_k} = \frac{\partial L}{\partial a_{k+1}} \frac{\partial a_{k+1}}{\partial W_k}
$$

$$
\frac{\partial L}{\partial W_k} = \frac{\partial L}{\partial a_{k+1}} \bullet h_k
$$

$$
\frac{\partial L}{\partial W_k} = \delta_{k+1} \bullet h_k
$$

€

1. Backpropagate error to layer below

$$
\delta_k = \frac{\partial L}{\partial a_k}
$$
\n
$$
\delta_k = \frac{\partial L}{\partial a_{k+1}} \frac{\partial a_{k+1}}{\partial h_k} \frac{\partial h_k}{\partial a_k}
$$
\n
$$
\delta_k = W_k^T \frac{\partial L}{\partial a_{k+1}} \bullet g'(a_k)
$$
\n
$$
\delta_k = W_k^T \delta_{k+1} \bullet g'(a_k)
$$

Optimization

Stochastic Gradient Descent

 $\mathbf{W} \leftarrow \mathbf{W} - \eta$ ∂*L* [∂]*W*

 η : learning rate

Stochastic Gradient Descent with momentum

 $W \leftarrow W - \eta \Delta$

 $\Delta \longleftarrow 0.9\Delta + \frac{\partial L}{\partial \mathbf{M}}$ [∂]**W**

Stochastic Gradient Descent with L2 regularization

 $\mathbf{W} \leftarrow \mathbf{W} - \eta$ ∂*L*

Recommended lectures:

 $\frac{\partial L}{\partial W}$ – λ Weight decay http://cs231n.github.io/optimization-1/

http://cs231n.github.io/optimization-2/