
Day 1 Lecture 4

Backward Propagation

Elisa Sayrol

Learning

Purely Supervised
Typically Backpropagation + Stochastic Gradient Descent (SGD)
Good when there are lots of labeled data

Layer-wise Unsupervised + Supervised classifier
Train each layer in sequence, using regularized auto-encoders or Restricted Boltzmann Machines
(RBM)
Hold the feature extractor, on top train linear classifier on features
Good when labeled data is scarce but there are lots of unlabeled data

Layer-wise Unsupervised + Supervised Backprop
Train each layer in sequence
Backprop through the whole system
Good when learning problem is very difficult

Slide Credit: Lecun

From Lecture 3
L Hidden Layers
Hidden pre-activation (k>0)

Hidden activation (k=1,…L)

Output activation (k=L+1)

€

a(k+1)(x) = b(k) +W(k)h(k)(x)

!

h(k)(x) = g(a(k)(x))

!

h(L+1)(x) = o(a(L+1)(x)) = f(x)

€

h(1)(x) = x

Figure Credit: Hugo Laroche NN course
!

o(a) = softmax(a) =
exp(a1)
exp(ac)c

"
...

exp(aC)
exp(ac)c

"

$

%
%

&

'

(
(

T

Backpropagation algorithm

The output of the Network gives class scores that depens on the input
and the parameters

•  Define a loss function that quantifies our unhappiness with the
scores across the training data.

•  Come up with a way of efficiently finding the parameters that
minimize the loss function (optimization)

€

f (x) = h(L+1)(x) = o(a(L+1)(x)) = o(b(L) +W(L)h(L)(x))

Probability Class given an input
(softmax)

Minimize the loss (plus some
regularization term) w.r.t. Parameters

over the whole training set.

Loss function; e.g., negative log-
likelihood (good for classification)

h2	 h3	 a3	 a4	 h4	
Loss

Hidden Hidden Output

W2	 W3	

x	 a2	

Input

W1	

€

y = 00...01
k
0...00⎡

⎣ ⎢
⎤
⎦ ⎥

€

p(ck =1x) =
exp(ak)
exp(ac)c

∑

€

L(x,y;W) = − y j log(p(c j x))j
∑ +

λ
2
W 2

2
€

W* = argminθ L(xn,yn;W)
j

∑
€

L(x,y;W) = − y j log(p(c j x))j
∑

Regularization term (L2 Norm)
aka as weight decay

Figure Credit: Kevin McGuiness

Forward Pass

Backpropagation algorithm
•  We need a way to fit the model to data: find parameters (W(k), b(k)) of the

network that (locally) minimize the loss function.
•  We can use stochastic gradient descent. Or better yet, mini-batch

stochastic gradient descent.
•  To do this, we need to find the gradient of the loss function with respect to

all the parameters of the model (W(k), b(k))
•  These can be found using the chain rule of differentiation.
•  The calculations reveal that the gradient wrt. the parameters in layer k only

depends on the error from the above layer and the output from the layer
below.

•  This means that the gradients for each layer can be computed iteratively,
starting at the last layer and propagating the error back through the network.
This is known as the backpropagation algorithm.

Slide Credit: Kevin McGuiness

1. Find the error in the top layer: 3. Backpropagate error to layer below 2. Compute weight updates

h2	 h3	 a3	 a4	 h4	
Loss

Hidden Hidden Output

W2	 W3	

x	 a2	

Input

W1	

€

δK =
∂L
∂aK

€

δK =
∂L
∂hK

∂hK
∂aK

€

δK =
∂L
∂hK

• g'(aK)

€

∂L
∂Wk

=
∂L
∂ak+1

∂ak+1

∂Wk

€

∂L
∂Wk

=
∂L
∂ak+1

• hk

€

∂L
∂Wk

= δk+1 • hk

€

δ4

€

δ3

€

δ2

€

δ1

€

δk =
∂L
∂ak

€

δk =
∂L
∂ak+1

∂ak+1

∂hk
∂hk
∂ak

€

δk =Wk
T ∂L
∂ak+1

• g'(ak)

€

δk =Wk
Tδk+1 • g'(ak)

L	

Figure Credit: Kevin McGuiness

Backward Pass

Optimization
Stochastic Gradient Descent

Stochastic Gradient Descent with momentum

Stochastic Gradient Descent with L2 regularization
€

W← ⎯ ⎯ W −ηΔ

Δ← ⎯ ⎯ 0.9Δ +
∂L
∂W

€

W← ⎯ ⎯ W −η
∂L
∂W

€

W← ⎯ ⎯ W −η
∂L
∂W

− λW
http://cs231n.github.io/optimization-1/

http://cs231n.github.io/optimization-2/

€

η : learning rate

€

λ : weight decay
Recommended lectures:

