DEEP LEARNING FOR COMPUTER VISION

Summer Seminar UPC TelecomBCN, 4 - 8 July 2016

Day 1 Lecture 4 **Backward Propagation**

DEU

Eva

Mohedano

Kevin

McGuinness

Dublin City University Insight

+ info: TelecomBCN.DeepLearning.Barcelona

Elisa Sayrol

UPC

and Communications Image Processing Group

Learning

Purely Supervised

Typically Backpropagation + Stochastic Gradient Descent (SGD) Good when there are lots of labeled data

Layer-wise Unsupervised + Supervised classifier

Train each layer in sequence, using regularized auto-encoders or Restricted Boltzmann Machines (RBM)

Hold the feature extractor, on top train linear classifier on features Good when labeled data is scarce but there are lots of unlabeled data

Layer-wise Unsupervised + Supervised Backprop

Train each layer in sequence Backprop through the whole system *Good when learning problem is very difficult*

Slide Credit: Lecun

From Lecture 3

Figure Credit: Hugo Laroche NN course

Backpropagation algorithm

The output of the Network gives class **scores** that depens on the input and the parameters

 $f(\mathbf{x}) = \mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{o}(\mathbf{b}^{(L)} + \mathbf{W}^{(L)}\mathbf{h}^{(L)}(\mathbf{x}))$

- Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function (**optimization**)

Backpropagation algorithm

- We need a way to fit the model to data: find parameters (W^(k), b^(k)) of the network that (locally) minimize the loss function.
- We can use **stochastic gradient descent**. Or better yet, mini-batch stochastic gradient descent.
- To do this, we need to find the gradient of the loss function with respect to all the parameters of the model (W^(k), b^(k))
- These can be found using the **chain rule** of differentiation.
- The calculations reveal that the gradient wrt. the parameters in layer k only depends on the error from the above layer and the output from the layer below.
- This means that the gradients for each layer can be computed iteratively, starting at the last layer and propagating the error back through the network. This is known as the **backpropagation** algorithm.

Slide Credit: Kevin McGuiness

1. Find the error in the top layer:

2. Compute weight updates

 $\delta_{K} = \frac{\partial L}{\partial a_{K}}$ $\delta_{K} = \frac{\partial L}{\partial h_{K}} \frac{\partial h_{K}}{\partial a_{K}}$ $\delta_{K} = \frac{\partial L}{\partial h_{K}} \bullet g'(a_{K})$

Figure Credit: Kevin McGuiness

$$\frac{\partial L}{\partial W_k} = \frac{\partial L}{\partial a_{k+1}} \frac{\partial a_{k+1}}{\partial W_k}$$

$$\frac{\partial L}{\partial W_k} = \frac{\partial L}{\partial a_{k+1}} \bullet h_k$$

$$\frac{\partial L}{\partial W_k} = \delta_{k+1} \bullet h_k$$

3. Backpropagate error to layer below

$$\delta_{k} = \frac{\partial L}{\partial a_{k}}$$

$$\delta_{k} = \frac{\partial L}{\partial a_{k+1}} \frac{\partial a_{k+1}}{\partial h_{k}} \frac{\partial h_{k}}{\partial a_{k}}$$

$$\delta_{k} = W_{k}^{T} \frac{\partial L}{\partial a_{k+1}} \bullet g'(a_{k})$$

$$\delta_{k} = W_{k}^{T} \delta_{k+1} \bullet g'(a_{k})$$

Optimization

Stochastic Gradient Descent

 $\mathbf{W} \longleftarrow \mathbf{W} - \eta \frac{\partial L}{\partial W}$ η : learning rate

Stochastic Gradient Descent with momentum

 $W \leftarrow W - \eta \Delta$

 $\Delta \leftarrow 0.9\Delta + \frac{\partial L}{\partial \mathbf{W}}$

Stochastic Gradient Descent with L2 regularization

 $\mathbf{W} \longleftarrow \mathbf{W} - \eta \frac{\partial L}{\partial W} - \lambda |\mathbf{W}| \qquad \lambda : \text{ weight decay}$

Recommended lectures:

http://cs231n.github.io/optimization-1/

http://cs231n.github.io/optimization-2/