DEEP LEARNING FOR COMPUTER VISION

Summer Seminar UPC TelecomBCN, 4 - 8 July 2016

Instructors

Giró-i-Nieto

Organizers

+ info: TelecomBCN.DeepLearning.Barcelona

Day 2 Lecture 6 **Recurrent Neural Networks**

Xavier Giró-i-Nieto

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Department of Signal Theory and Communications

Image Processing Group

Acknowledgments

Santi Pascual

General idea

ConvNet (or CNN)

General idea

ConvNet (or CNN)

Multilayer Perceptron

Output Layer

Hidden Layers

Input Layer

Alex Graves, "Supervised Sequence Labelling with Recurrent Neural Networks"

The output depends

ONLY on the current

input.

The hidden layers and the output depend from previous states of the hidden layers

The hidden layers and the output depend from previous states of the hidden layers

Common visual sequences:

The input is a **<u>SEQUENCE</u> x(t)** of any length.

Common visual sequences:

The input is a **<u>SEQUENCE</u> x(t)** of any length.

Video

I Ter sar

Temporal sampling

Must learn temporally shared weights w2; in addition to w1 & w3.

Bidirectional RNN (BRNN)

Must learn weights w2, w3, w4 & w5; in addition to w1 & w6.

Bidirectional RNN (BRNN)

Formulation: One hidden layer

Slide: Santi Pascual

Formulation: Single recurrence

Formulation: Multiple recurrences

RNN problems

Long term memory vanishes because of the T nested multiplications by U.

. . .

$$\mathbf{h}_t = g(\mathbf{W} \cdot \mathbf{x}_t + \mathbf{U} \cdot g(\mathbf{W} \cdot \mathbf{x}_{t-T} + \mathbf{U} \cdot \mathbf{h}_{t-T} + \mathbf{b}_h) \cdots) + \mathbf{b}_h)$$

RNN problems

During training, gradients may explode or vanish because of temporal depth.

Example: Backpropagation in time with 3 steps.

Slide: Santi Pascual

Stanford NLP Group

LSTMs are really mainstream now ... just referenced in the **@Apple #WWDC2016** keynote for iOS QuickType auto-completion

Mostra-ho traduït

retuits 49	AGRADA A		
20:03 - 13	juny 2016		
4	1] 49	60	

Hochreiter, Sepp, and Jürgen Schmidhuber. <u>"Long short-term memory."</u> Neural computation 9, no. 8 (1997): 1735-1780.

Based on a standard RNN whose neuron activates with *tanh*...

Figure: Cristopher Olah, <u>"Understanding LSTM Networks"</u> (2015)

C_t is the cell state, which flows through the entire chain...

Figure: Cristopher Olah, <u>"Understanding LSTM Networks"</u> (2015)

...and is updated with a <u>sum</u> instead of a product. This avoid memory vanishing and exploding/vanishing backprop gradients.

Figure: Cristopher Olah, "Understanding LSTM Networks" (2015)

Three **gates** are governed by *sigmoid* units (btw [0,1]) define the control of in & out information..

Figure: Cristopher Olah, <u>"Understanding LSTM Networks"</u> (2015)

Forget Gate:

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Concatenate

Figure: Cristopher Olah, "Understanding LSTM Networks" (2015) / Slide: Alberto Montes

Input Gate Layer

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

New contribution to cell state

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Classic neuron

Figure: Cristopher Olah, <u>"Understanding LSTM Networks"</u> (2015) / <u>Slide</u>: Alberto Montes

Update Cell State (memory):

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Figure: Cristopher Olah, <u>"Understanding LSTM Networks"</u> (2015) / <u>Slide</u>: Alberto Montes

Output Gate Layer

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

Output to next layer

 $h_t = o_t * \tanh\left(C_t\right)$

Figure: Cristopher Olah, "Understanding LSTM Networks" (2015) / Slide: Alberto Montes

Gated Recurrent Unit (GRU)

Similar performance as LSTM with less computation.

Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. <u>"Learning phrase representations using RNN encoder-decoder for</u> <u>statistical machine translation."</u> arXiv preprint arXiv:1406.1078 (2014).

Applications: Machine Translation

Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. <u>"Learning phrase representations using RNN encoder-decoder for statistical machine translation."</u> arXiv preprint arXiv:1406.1078 (2014).

Applications: Image Classification

RowLSTM

Diagonal BiLSTM

4	_	L	-	

Classification MNIST

Model	NLL Test
DBM 2hl [1]:	≈ 84.62
DBN 2hl [2]:	≈ 84.55
NADE [3]:	88.33
EoNADE 2hl (128 orderings) [3]:	85.10
EoNADE-5 2hl (128 orderings) [4]:	84.68
DLGM [5]:	≈ 86.60
DLGM 8 leapfrog steps [6]:	≈ 85.51
DARN 1h1 [7]:	≈ 84.13
MADE 2hl (32 masks) [8]:	86.64
DRAW [9]:	≤ 80.97
Diagonal BiLSTM (1 layer, $h = 32$): Diagonal BiLSTM (7 layers, $h = 16$):	80.75 79.20

van den Oord, Aaron, Nal Kalchbrenner, and Koray Kavukcuoglu. <u>"Pixel Recurrent Neural Networks."</u> arXiv preprint arXiv:1601.06759 (2016).

Applications: Segmentation

Francesco Visin, Marco Ciccone, Adriana Romero, Kyle Kastner, Kyunghyun Cho, Yoshua Bengio, Matteo Matteucci, Aaron Courville, <u>"ReSeg: A Recurrent Neural Network-Based Model for Semantic Segmentation"</u>. DeepVision CVPRW 2016.

Thanks ! Q&A ?

Follow me at

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Department of Signal Theory and Communications

Image Processing Group

https://imatge.upc.edu/web/people/xavier-giro