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Attention Models: Motivation

Image: 
H x W x 3

bird

The whole input volume is used to predict the output...
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Attention Models: Motivation

Image: 
H x W x 3

bird

The whole input volume is used to predict the output...

...despite the fact that not all pixels are equally important

3



Attention Models: Motivation

Attention models can
relieve computational burden

Helpful when processing big 
images ! 
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Attention Models: Motivation

Attention models can
relieve computational burden

Helpful when processing big 
images ! 
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bird



Encoder & Decoder
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Kyunghyun Cho, “Introduction to Neural 
Machine Translation with GPUs” (2015)

From previous lecture...

The whole input sentence 
is used to produce the translation

https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/
https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/
https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/


Attention Models
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Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015
Kyunghyun Cho, “Introduction to Neural Machine Translation with GPUs” (2015)

https://arxiv.org/abs/1409.0473
https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/


Attention Models

A bird flying over a body of water

Idea: Focus in different parts of the input as you make/refine predictions in time

E.g.: Image Captioning
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LSTM Decoder

LSTMLSTM LSTMCNN LSTM

A bird flying

...

<EOS>

The LSTM decoder “sees” the input only at the beginning !

Features: 
D
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...



Attention for Image Captioning

CNN

Image: 
H x W x 3

Features: 
L x D

Slide Credit: CS231n 10

http://cs231n.github.io/


Attention for Image Captioning

CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

Slide Credit: CS231n

Attention 
weights (LxD)
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http://cs231n.github.io/


Attention for Image Captioning

Slide Credit: CS231n

CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Attention 
weights (LxD)

a2 y2

Weighted 
features: D

predicted 
word
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http://cs231n.github.io/


Attention for Image Captioning

CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

a2 y2

h2

a3 y3

z2 y2
Weighted 

features: D

predicted 
word

Attention 
weights (LxD)

Slide Credit: CS231n 13

http://cs231n.github.io/


Attention for Image Captioning

Xu et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML 2015
14

http://www.jmlr.org/proceedings/papers/v37/xuc15.pdf
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Xu et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML 2015
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http://www.jmlr.org/proceedings/papers/v37/xuc15.pdf


Attention for Image Captioning

Xu et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML 2015
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http://www.jmlr.org/proceedings/papers/v37/xuc15.pdf


Soft Attention

Xu et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML 2015

CNN

Image: 
H x W x 3

Grid of features
(Each D-

dimensional)

a b

c d

pa pb

pc pd

Distribution over 
grid locations

pa + pb + pc + pc = 1

Soft attention:
Summarize ALL locations
z = paa+ pbb + pcc + pdd

Derivative dz/dp is nice!
Train with gradient descent

Context vector z
(D-dimensional)

From 
RNN:

Slide Credit: CS231n 17

http://www.jmlr.org/proceedings/papers/v37/xuc15.pdf
http://cs231n.github.io/


Soft Attention

Xu et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML 2015

CNN

Image: 
H x W x 3

Grid of features
(Each D-

dimensional)

a b

c d

pa pb

pc pd

Distribution over 
grid locations

pa + pb + pc + pc = 1

Soft attention:
Summarize ALL locations
z = paa+ pbb + pcc + pdd

Differentiable function
Train with gradient descent

Context vector z
(D-dimensional)

From 
RNN:

Slide Credit: CS231n

● Still uses the whole input !
● Constrained to fix grid
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http://www.jmlr.org/proceedings/papers/v37/xuc15.pdf
http://cs231n.github.io/


Hard attention

Input image:
H x W x 3

Box Coordinates:
(xc, yc, w, h)

Cropped and 
rescaled image:

X x Y x 3

Not a differentiable function !

Can’t train with backprop :(
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Hard attention:
Sample a subset 

of the input

need reinforcement learning

Gradient is 0 almost everywhere
Gradient is undefined at x  = 0

http://karpathy.github.io/2016/05/31/rl/


Hard attention

Gregor et al. DRAW: A Recurrent Neural Network For Image Generation. ICML 2015

Generate images by attending to 
arbitrary regions of the output 

Classify images by attending to 
arbitrary regions of the input 
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https://arxiv.org/pdf/1502.04623v2.pdf


Hard attention

Gregor et al. DRAW: A Recurrent Neural Network For Image Generation. ICML 2015 21

https://arxiv.org/pdf/1502.04623v2.pdf


Hard attention

22Graves. Generating Sequences with Recurrent Neural Networks. arXiv 2013

Read text, generate handwriting using an RNN that attends at 
different arbitrary regions over time

GENERATED

REAL

http://arxiv.org/abs/1308.0850


Hard attention

Input image:
H x W x 3

Box Coordinates:
(xc, yc, w, h)

Cropped and 
rescaled image:

X x Y x 3

C
N

N bird

Not a differentiable function !

Can’t train with backprop :( 23



Spatial Transformer Networks

Input image:
H x W x 3

Box Coordinates:
(xc, yc, w, h)

Cropped and 
rescaled image:

X x Y x 3

C
N

N bird

Jaderberg et al. Spatial Transformer Networks. NIPS 2015

Not a differentiable function !

Can’t train with backprop :(

Make it differentiable

Train with backprop :) 24

http://papers.nips.cc/paper/5854-spatial-transformer-networks


Spatial Transformer Networks

Jaderberg et al. Spatial Transformer Networks. NIPS 2015

Input image:
H x W x 3

Box Coordinates:
(xc, yc, w, h)

Cropped and 
rescaled image:

X x Y x 3

Can we make this 
function differentiable?

Idea: Function mapping 
pixel coordinates (xt, yt) of 
output to pixel coordinates 
(xs, ys) of input

Slide Credit: CS231n

Repeat for all pixels 
in output to get a 
sampling grid

Then use bilinear 
interpolation to 
compute output

Network 
attends to 
input by 
predicting ᶚ
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http://papers.nips.cc/paper/5854-spatial-transformer-networks
http://cs231n.github.io/


Spatial Transformer Networks

Jaderberg et al. Spatial Transformer Networks. NIPS 2015

Easy to incorporate in any network, anywhere !

Differentiable module

Insert spatial transformers into a 
classification network and it learns 
to attend and transform the input
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http://papers.nips.cc/paper/5854-spatial-transformer-networks


Spatial Transformer Networks

Jaderberg et al. Spatial Transformer Networks. NIPS 2015
27

Fine-grained classification

http://papers.nips.cc/paper/5854-spatial-transformer-networks


Visual Attention

Zhu et al. Visual7w: Grounded Question Answering in Images. arXiv 2016

Visual Question Answering
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http://arxiv.org/abs/1511.03416


Visual Attention

Sharma et al. Action Recognition Using Visual Attention. arXiv 2016
Kuen et al. Recurrent Attentional Networks for Saliency Detection. CVPR 2016

Salient Object DetectionAction Recognition in Videos
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http://arxiv.org/pdf/1511.04119v3.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Kuen_Recurrent_Attentional_Networks_CVPR_2016_paper.pdf


Other examples

Chen et al. Attention to Scale: Scale-aware Semantic Image Segmentation. CVPR 2016
You et al. Image Captioning with Semantic Attention. CVPR 2016

Attention to scale for 
semantic segmentation

Semantic attention
For image captioning
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http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Chen_Attention_to_Scale_CVPR_2016_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/You_Image_Captioning_With_CVPR_2016_paper.pdf


Resources

● CS231n Lecture @ Stanford [slides][video]
● More on Reinforcement Learning
● Soft vs Hard attention
● Handwriting generation demo
● Spatial Transformer Networks - Slides & Video by Victor Campos
● Attention implementations:

○ Seq2seq in Keras
○ DRAW & Spatial Transformers in Keras
○ DRAW in Lasagne
○ DRAW in Tensorflow
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https://docs.google.com/presentation/d/1eaMBijKHf4tJxJAGVo1wN2bxIeKg2ku-h_Y6y7j-Fbs/edit?usp=sharing
https://youtu.be/UFnO-ADC-k0
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://stackoverflow.com/questions/35549588/soft-attention-vs-hard-attention
http://stackoverflow.com/questions/35549588/soft-attention-vs-hard-attention
http://www.cs.toronto.edu/~graves/handwriting.html
http://www.cs.toronto.edu/~graves/handwriting.html
http://www.slideshare.net/xavigiro/spatial-transformer-networks
https://www.youtube.com/watch?v=6NOQC_fl1hQ&feature=youtu.be
https://github.com/farizrahman4u/seq2seq
https://github.com/farizrahman4u/seq2seq
https://github.com/EderSantana/seya
https://github.com/EderSantana/seya
https://github.com/skaae/lasagne-draw
https://github.com/skaae/lasagne-draw
https://github.com/jbornschein/draw
https://github.com/jbornschein/draw

