
Day 1 Lecture 5

Training



Given some paired training examples {(xi, yi): xi ∈ X, yi ∈ Y} produce a function y 
= f(x) such that f(x) generalizes well to previously unseen data.

Examples

● X are times of day, Y are light levels
● X are light levels, Y are times of day 
● X are measurements from sensors (temp, humidity, brightness, etc.), Y is {rain, no rain}
● X are words occurring in an email, Y is {spam, not spam}
● X are vectors of image pixels, Y is {cat, dog, car, person, …}
● X are recorded audio fragments, Y are words 

Goal



Loss function
Classification Metrics: 

Example: Binary cross entropy:

Not differenciable!



Training and monitoring progress
1. Split data into train, validation, and test sets

○ Keep 10-30% of data for validation

2. Fit model parameters on train set using SGD

3. After each epoch: 

○ Test model on validation set and compute loss
■ Also compute whatever other metrics you 

are interested in, e.g. top-5 accuracy
○ Save a snapshot of the model

4. Plot learning curves as training progresses

5. Stop when validation loss starts to increase

6. Use model with minimum validation loss

epoch

Loss
Validation loss

Training loss

Best model



Overfitting
Symptoms:

● Validation loss decreases at first, then starts 
increasing

● Training loss continues to go down

Try:
● Find more training data
● Add stronger regularization 

○ dropout, drop-connect, L2
● Data augmentation (flips, rotations, noise)
● Reduce complexity of your model

epoch

Loss
Validation loss

Training loss



Underfitting
Symptoms:

● Training loss decreases at first but then stops
● Training loss still high
● Training loss tracks validation loss

Try:
● Increase model capacity

○ Add more layers, increase layer size
● Use more suitable network architecture

○ E.g. multi-scale architecture
● Decrease regularization strength

epoch

Loss
Validation loss

Training loss



Structural risk minimization
Early stopping is a form of structural risk 
minimization

● Limits the space of models we explore to only 
those we expect to have good generalization error

● Helps prevent overfitting
● A type of regularization

Other regularization techniques:

● Weight constraints: e.g. L2 regularization
○ Aka. weight decay

● Dropout 
● Transfer learning, pretraining

Model space

Regularized 
model space

Local min with good 
generalization error

Local min with poor 
generalization error 

(overfit)



Weight decay

Add a penalty to the loss function for large 
weights

L2 regularization on weights

Differentiating, this translates to decaying the 
weights with each gradient descent step

Model space

ᷗ1 > ᷗ2 > ᷗ3 > ᷗ4 

ᷗ4ᷗ3
ᷗ2ᷗ1

underfit

overfit



Dropout
Modern regularization technique for deep nets

Used by most modern convnets

Method:

● During training, outputs of a layer to zero 
randomly with probability p

○ Prevents units from co-adapting too much
○ Forces network to learn more robust 

features

● At test time, dropout is disabled and unit 
output is multiplied by p

Srivastava et al. Dropout: A simple way to prevent neural networks from overfitting. JRML 15(1), 2014, pp 1929-1958.



Hyperparameters
Can already see we have lots of 
hyperparameters to choose:

1. Learning rate
2. Regularization constant
3. Number of epochs
4. Number of hidden layers
5. Nodes in each hidden layer
6. Weight initialization strategy
7. Loss function
8. Activation functions
9. …

:(

Choosing these is difficult, and a bit of an art.

There are some reasonable heuristics:
1. Try 0.1 for the learning rate. If this doesn’t work, 

divide by 3. Repeat.
2. Multiply LR by 0.1 every 1-10 epochs.
3. Try ~ 0.00001 as regularization constant
4. Try an existing network architecture and adapt it 

for your problem
5. Start smallish, keep adding layers and nodes until 

you overfit too much

You can also do a hyperparameter search if 
you have enough compute:

● Randomized search tends to work well


