DEEP LEARNING
FOR COMPUTER VISION

Day 1

Project kick off

Xavier Elisa Amaia i Kevin
Giré-i-Nieto Sayrol Salvador Mohedano McGuinness
Organizers
gglgf\?ﬂ'{'ﬂv:ourzcnmlx Barcelona
BARCELONATECH telecom g‘.’,’,’.:;f"'"""""“
Centro Nacional de Supercomputacion
“AnvIDIA.

Co-funded by the
| n S | ht BPU ot P
CENTEROF  of the European Union

EXCELLENCE

+ info: TelecomBCN.DeeplLearning.Barcelona




Motivation

What We Remember

9. Dn'mj a dramatic Prf:twu’mﬂ'ian} 209,

making & video, creating am

a.nim;ian, bu}lin'qj o vobot. SAY +
DO

2.9 Paticyatiagina | We rm@.j whak
AScussian, c.mﬁJj « pidcast] wie SAY.

We Aumsmbn[S0T f whot we HEAR aud SEE.
1g. U:.kdxlqj o nded, a Pf‘tfemi'bf\ﬂ“ll e demonstration,

We /I.WWJ!M. 30'1.j vhal we SEE.
G-j- Loakl-\j ok lma.g,z,s in @ book, & mafﬂu,iu.a website

We emember ?_DQ of what we HEAR. _ _
L. ‘.sh.ni-\j foa ledure, a Pudcas‘i'l a radio interriow,

o remember [|0% of what we READ.
2.9 Riadirg o book, on achide o loloﬂ post.

T T T T []
[0% 20% 30% 509, 0% 907,
Based on the wark of Edjar Dale @S‘lﬂviud_uctwnr%



Motivation

Average Rentention
Rate

Traditional Lecture 5%

Reading \ 10%

/ Audio-Visual \ 20%

/ Demonstration \ 30%
Teaming / Discussion Group \ 50%
/ Practice by Doing \ 75%

/ Teach Others / Immediate Use \ 90%




Development

ithub

SOCIAL CODING




Development

Improve your GitHub account with GitHub for Education.



https://education.github.com/

Development

Show your experiments on Jupyter notebooks.



http://jupyter.org/

Development

Examples:

[GDSA 2015] S5: Rankings Classification: Instant Recognition with Caffe

In this week's assignment we are going to replace the random image descriptors by descriptors that are meaningful and will help In this example we'll classify an image with the bundled CaffeNet model (which is based on the network architecture of Krizhevsky
us generate smart rankings for each one of the validation images. This notebook shows all the required steps to achieve this point, etal for ImageNet)

including the training of the codebook, the construction of BoW descriptors and the generation of the rankings based on feature

similarity We'll compare CPU and GPU modes and then dig into the madel to inspect features and the output.

e start with some basic imports, including the chosen parameters
1. Setup
In [1]: | import numpy as np
import time
# Add the root path (the path above this one) to the pythonpath.
sys.path.insert(e,’../") In [1]: | # set up Python environment: numpy for numerical routines, and matplotlib for plotting
from src.params import get_params import numpy as np
import matplotlib.pyplot as plt
# display plots in this notebook
#matplotlib inline

« First, set up Python, numpy. and matplotlib

params = get_params()

params includes the definition of the directories where all files will be saved, as well as the parameters related to the feature

extraction and ranking steps. For example: # set display defaults
plt.rcParams[’figure.figsize'] = (10, 10) # Large images
In [2]: | print "Number of clustars:”, params[ descriptor size’] plt.rcParams[image. interpolation'] = ‘nearest’ # don't interpolate: show square pixels
print "Descriptor type:",params['descriptor_type'] plt.rcParams[‘image.cmap’] = ‘gray’ # use grayscale output rather than a (potentially misleading) color h
print "Keypoint detector:", params['keypoint_type'] eatmap
print "Resize dimension:", params['max_size'
print "Distance metric:"”, params['distance type'] o EoatcafEs
Number of clusters: 512
Descriptapitypes: SIET In [2]: | # The caffe module needs to be on the Python path;
Keypount detectur; SIFY # we'll add it here explicitly.
Resize dimension: 3@e import sys
Eistapce mebiier Suckifcdn caffe root = "../" # this file should be run from {caffe root}/examples (otherwise change this Line)

paramsf'max_size] denotes the width to use to resize the images in the feature extraction step. The height is calculated in sys.path.insert(e, caffe_root + 'python’)

proportion to preserve the aspect ratio import caffe

# If you get "No module named _caffe”, either you have not bu

Lt pycaffe or you have the wrong path.
Feature extraction with Bag of Words

« If needed, download the reference model ("CaffeNet", a variant of AlexNet).
The first thing we need to do is to generate a single descriptor for every image in the training and validation sets. As we explained

in earlier sessions, we will use the Bag of Words aggregation technique, which consists in training a codebook of visual words and In [3]: | import os
building an image descriptor encoding the number of times each word in the codebook appears in the image. if os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference caffenet.caffemodel
print ‘'Caffelet found.'
" " pore else:
Step 1: Local feature extraction with the training set print 'Downloading pre-trained CaffeNet model...’

I../scripts/download_model binary.py ../models/bvlc_reference_caffenet

To build the codebook we only use the images in the training set, thus we need to compute local descriptors for all training images
and stack them together in a single numpy array. The function stack_features does exactly this procedure.



Development

At the end of the project, publish your results on a GitHub page.

w”  github:pages


https://pages.github.com/

Datasets

EHHRH&EI
ol e [ 7 o [V
EEEVNEID
il Y 3 ) o
ol P I
dHsRPES

MNIST CIFAR-10 Terrassa Buildings 900

SR R TR R el S N
SN NwN A
> °Q ) O o & O
S 0OV

oOla3>¢4y
olal3yg
O] 24
O)23¢9
O123Y
0l 23Y4
01 23%A4

annh ot O

= ; ‘ E 3



https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://imatge.upc.edu/web/resources/terrassa-buildings-900
https://imatge.upc.edu/web/resources/terrassa-buildings-900

Tasks

Block

Title
Architecture

Training

Visualization

Transfer
learning

Free choice

Goal
Experiment with the layers and their parameters.

Data augmentation, Batch size, Overfitting &
Regularization

Visualization of filters, Visualization over images

Fine-tuning, domain adaptation

10



Task 1: Architecture 3

e Build your own network to solve a classification task.
o Choose which layers to use and how to sort them.
o Study the memory requirements and computational
load for each type of layer.
e Recommended:
o Experiment with small-ish architectures
o Avoid using many conv layers when training on CPU
o Start with MNIST

11



Task 2: Training

e Study the impact in performance of:
o Data augmentation.
o Sizes of the training batches.
o Batch normalization
e Draw your training and validation curves.
e Overfitting
o Force an overfitting problem.
o Investigate if regularization (eg. drop out)
reduces/solves it.

12



Task 3: Visualization BED) (O

A
£E ERE
—

Golo

e Visualize filter responses.
o From your own network.
o From a pre-trained network.
o t-SNE
e Off-the-shelf AlexNet:
o Visualize local classification over a small set of
Images.

13



Task 4: Transfer learning & &
I )
e Train a network over CIFAR-10 and fine-tune over
Terrassa Buildings 900.
o Off-the-shelf convnet:
o Freeze weight in all layers but the last one, and

replace it with a softmax to solve Terrassa Buildings
900.

14



Task 5: Open project

Bring your ideas to the project sessions for discussion.
Some ideas:

e Generative Adversarial Networks with MNIST.

e Neural Style, Deep Dream.

15


https://oshearesearch.com/index.php/2016/07/01/mnist-generative-adversarial-model-in-keras/
https://oshearesearch.com/index.php/2016/07/01/mnist-generative-adversarial-model-in-keras/

Missing GitHub users

dlcv05 - Michele de Compri
dlcv02 - Alex Nowak

e Add your username to the spreadsheet!
e Repo admins: add all your teammates.

16


https://docs.google.com/spreadsheets/d/18oZ9D8W44ptX3_rhHTXLxlRMzMlvZy0V9Lfq5yKGGns/edit#gid=0

Access to the server

Check Atenea for the instructions.

0 | ATENEA

17


http://atenea.upc.edu/

Installation Guidelines

e Project page

Server Access & Setup

The instructions for the access to the server will be provided to students by e-mail.

Once you are logged in the server, you will need to setup your working environment. The simplest way will be to use a virtual environment to install
your dependencies. As an example, if you are working with keras:

dlcv@imatge-dlcv:~% virtualenv keras-env

dlcv@imatge-dlcv:~% source keras-env/bin/activate

(keras-env) dlcv@imatge-dlcv:~% pip install theano
(keras-env) dlcv@imatge-dlcv:~$ pip install keras

Installation in personal laptops

Here is a list of resources to install the project dependencies in your laptops:

« Docker for Deep Learning. Contains most deep learning libraries. It works for Linux, MacOSX and Windows. However, GPU support is only
available for the first two.

« |If you are using Windows 10 & Keras & want to have GPU support, here is a detailed installation guide.

« TensorFlow, CUDA, OpenCV Installation Guide by Teaching Assistant Andrea Ferri. Please use the issues section in his repository for any
guestions you may have about it.

18


http://imatge-upc.github.io/telecombcn-2016-dlcv/project
http://imatge-upc.github.io/telecombcn-2016-dlcv/project

Project sessions

e Part |: Open issues of general interest.
e Part ll: Individual discussions with the teams.

19



Oral session

e 12 minutes presentation
+ 5 minutes questions

e Each student must
present one block.
Instructors will decide
which one each.

20



Registration in Piazza

e Register to Piazza you
have not done it yet.

e Check that you can
access today's test.

21


https://piazza.com/configure-classes/summer2016/230360

