
Memory usage and
computational
considerations

Day 2 Lecture 1

Introduction

Useful when designing deep neural network architectures to be able to estimate
memory and computational requirements on the “back of an envelope”

This lecture will cover:

● Estimating neural network memory consumption
● Mini-batch sizes and gradient splitting trick
● Estimating neural network computation (FLOP/s)
● Calculating effective aperture sizes

Improving convnet accuracy

A common strategy for improving convnet accuracy is
to make it bigger

● Add more layers
● Made layers wider, increase depth
● Increase kernel sizes*

Works if you have sufficient data and strong
regularization (dropout, maxout, etc.)

Especially true in light of recent advances:

● ResNets: 50-1000 layers
● Batch normalization: reduce covariate shift

network year layers top-5

Alexnet 2012 7 17.0

VGG-19 2014 19 9.35

GoogleNet 2014 22 9.15

Resnet-50 2015 50 6.71

Resnet-152 2015 152 5.71

Without ensembles

Increasing network size

Increasing network size means using more
memory

Train time:

● Memory to store outputs of intermediate
layers (forward pass)

● Memory to store parameters
● Memory to store error signal at each

neuron
● Memory to store gradient of parameters
● Any extra memory needed by optimizer (e.

g. for momentum)

Test time:

● Memory to store outputs of intermediate
layers (forward pass)

● Memory to store parameters

Modern GPUs are still relatively memory
constrained:

● GTX Titan X: 12GB
● GTX 980: 4GB
● Tesla K40: 12GB
● Tesla K20: 5GB

Calculating memory requirements

Often the size of the network will be practically bound by available memory

Useful to be able to estimate memory requirements of network

True memory usage depends on the implementation

Calculating the model size

Conv layers:

Num weights on conv layers does not depend on input size
(weight sharing)

Depends only on depth, kernel size, and depth of previous layer

Calculating the model size

parameters
 weights: depth

n
 x (kernel

w
 x kernel

h
) x depth

(n-1)

 biases: depth
n

Calculating the model size

parameters
 weights: 32 x (3 x 3) x 1 = 288
 biases: 32

Calculating the model size

parameters
 weights: 32 x (3 x 3) x 32 = 9216
 biases: 32

Pooling layers are parameter-free

Calculating the model size

Fully connected layers

● #weights = #outputs x #inputs
● #biases = #outputs

If previous layer has spatial extent (e.g. pooling
or convolutional), then #inputs is size of
flattened layer.

Calculating the model size

parameters
 weights: #outputs x #inputs
 biases: #inputs

Calculating the model size

parameters
 weights: 128 x (14 x 14 x 32) = 802816
 biases: 128

Calculating the model size

parameters
 weights: 10 x 128 = 1280
 biases: 10

Total model size

parameters
 weights: 10 x 128 = 1280
 biases: 10

parameters
 weights: 128 x (14 x 14 x 32) = 802816
 biases: 128

parameters
 weights: 32 x (3 x 3) x 32 = 9216
 biases: 32

parameters
 weights: 32 x (3 x 3) x 1 = 288
 biases: 32

Total: 813,802
 ~ 3.1 MB (32-bit floats)

Layer blob sizes

Easy…

Conv layers: width x height x depth

FC layers: #outputs

32 x (14 x 14) = 6,272

32 x (28 x 28) = 25,088

Total memory requirements (train time)

Memory for layer error

Memory for parameters

Memory for param gradients

Depends on implementation and optimizer

Memory for momentum

Memory for layer outputs

Implementation overhead (memory for convolutions, etc.)

Total memory requirements (test time)

Memory for layer error

Memory for parameters

Memory for param gradients

Depends on implementation and optimizer

Memory for momentum

Memory for layer outputs

Implementation overhead (memory for convolutions, etc.)

Memory for convolutions

Several libraries implement convolutions as matrix multiplications (e.g. caffe). Approach known as
convolution lowering

Fast (use optimized BLAS implementations) but can use a lot of memory, esp. for larger kernel sizes
and deep conv layers

5

5

…

25

2
2
4

224
2
2
4

x

2
2
4

[50716 x 25] [25 x 1]

K
er

ne
l

cuDNN uses a more
memory efficient
method!

https://arxiv.
org/pdf/1410.0759.pdf

https://arxiv.org/pdf/1410.0759.pdf
https://arxiv.org/pdf/1410.0759.pdf
https://arxiv.org/pdf/1410.0759.pdf

Mini-batch sizes

Total memory in previous slides is for a single example.

In practice, we want to do mini-batch SGD:

● More stable gradient estimates
● Faster training on modern hardware

Size of batch is limited by model architecture, model size, and hardware memory.

May need to reduce batch size for training larger models.

This may affect convergence if gradients are too noisy.

Gradient splitting trick

Mini-batch 1

Network

ΔWLoss 1

Loss 1

Mini-batch 2 Loss 2

ΔWLoss 2

Mini-batch 3 Loss 3

ΔWLoss 3

Loss on batch n

Estimating computational complexity

Useful to be able to estimate computational
complexity of an architecture when designing it

Computation in deep NN is dominated by multiply-
adds in FC and conv layers.

Typically we estimate the number of FLOPs
(multiply-adds) in the forward pass

Ignore non-linearities, dropout, and normalization
layers (negligible cost).

Estimating computational complexity

Fully connected layer FLOPs

Easy: equal to the number of weights (ignoring
biases)

= #num_inputs x #num_outputs

Convolution layer FLOPs

Product of:

● Spatial width of the map
● Spatial height of the map
● Previous layer depth
● Current layer deptjh
● Kernel width
● Kernel height

Example: VGG-16

Layer H W kernel H kernel W depth repeats FLOP/s

input 224 224 1 1 3 1 0.00E+00

conv1 224 224 3 3 64 2 1.94E+09

conv2 112 112 3 3 128 2 2.77E+09

conv3 56 56 3 3 256 3 4.62E+09

conv4 28 28 3 3 512 3 4.62E+09

conv5 14 14 3 3 512 3 1.39E+09

flatten 1 1 0 0 100352 1 0.00E+00

fc6 1 1 1 1 4096 1 4.11E+08

fc7 1 1 1 1 4096 1 1.68E+07

fc8 1 1 1 1 100 1 4.10E+05

1.58E+10

Bulk of
computation is

here

Effective aperture size

Useful to be able to compute how far a
convolutional node in a convnet sees:

● Size of the input pixel patch that affects a
node’s output

● Known as the effective aperture size,
coverage, or receptive field size

Depends on kernel size and strides from
previous layers

● 7x7 kernel can see a 7x7 patch of the
layer below

● Stride of 2 doubles what all layers after
can see

Calculate recursively

Summary

Shown how to estimate memory and computational requirements of a deep neural
network model

Very useful to be able to quickly estimate these when designing a deep NN

Effective aperture size tells us how much a conv node can see. Easy to calculate
recursively

