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Introduction

Useful when designing deep neural network architectures to be able to estimate 
memory and computational requirements on the “back of an envelope”

This lecture will cover:

● Estimating neural network memory consumption
● Mini-batch sizes and gradient splitting trick
● Estimating neural network computation (FLOP/s)
● Calculating effective aperture sizes



Improving convnet accuracy

A common strategy for improving convnet accuracy is 
to make it bigger

● Add more layers
● Made layers wider, increase depth
● Increase kernel sizes*

Works if you have sufficient data and strong 
regularization (dropout, maxout, etc.)

Especially true in light of recent advances:

● ResNets: 50-1000 layers
● Batch normalization: reduce covariate shift

network year layers top-5

Alexnet 2012 7 17.0

VGG-19 2014 19 9.35

GoogleNet 2014 22 9.15

Resnet-50 2015 50 6.71

Resnet-152 2015 152 5.71

Without ensembles



Increasing network size

Increasing network size means using more 
memory

Train time:

● Memory to store outputs of intermediate 
layers (forward pass)

● Memory to store parameters
● Memory to store error signal at each 

neuron
● Memory to store gradient of parameters
● Any extra memory needed by optimizer (e.

g. for momentum)

Test time:

● Memory to store outputs of intermediate 
layers (forward pass)

● Memory to store parameters

Modern GPUs are still relatively memory 
constrained:

● GTX Titan X: 12GB
● GTX 980: 4GB
● Tesla K40: 12GB
● Tesla K20: 5GB



Calculating memory requirements

Often the size of the network will be practically bound by available memory

Useful to be able to estimate memory requirements of network 

True memory usage depends on the implementation



Calculating the model size

Conv layers:

Num weights on conv layers does not depend on input size 
(weight sharing)

Depends only on depth, kernel size, and depth of previous layer



Calculating the model size

parameters 
  weights: depth

n
 x (kernel

w
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Calculating the model size

parameters 
  weights: 32 x (3 x 3) x 1 = 288
  biases: 32



Calculating the model size

parameters 
  weights: 32 x (3 x 3) x 32 = 9216
  biases: 32

Pooling layers are parameter-free



Calculating the model size

Fully connected layers

● #weights = #outputs x #inputs
● #biases = #outputs

If previous layer has spatial extent (e.g. pooling 
or convolutional), then #inputs is size of 
flattened layer.



Calculating the model size

parameters 
  weights: #outputs x #inputs
  biases: #inputs



Calculating the model size

parameters 
  weights: 128 x (14 x 14 x 32) = 802816 
  biases: 128



Calculating the model size

parameters 
  weights: 10 x 128 = 1280 
  biases: 10



Total model size

parameters 
  weights: 10 x 128 = 1280 
  biases: 10

parameters 
  weights: 128 x (14 x 14 x 32) = 802816 
  biases: 128

parameters 
  weights: 32 x (3 x 3) x 32 = 9216
  biases: 32

parameters 
  weights: 32 x (3 x 3) x 1 = 288
  biases: 32

Total: 813,802
       ~ 3.1 MB (32-bit floats)



Layer blob sizes

Easy… 

Conv layers: width x height x depth

FC layers: #outputs

32 x (14 x 14) = 6,272

32 x (28 x 28) = 25,088



Total memory requirements (train time)

Memory for layer error

Memory for parameters

Memory for param gradients

Depends on implementation and optimizer

Memory for momentum

Memory for layer outputs

Implementation overhead (memory for convolutions, etc.)



Total memory requirements (test time)

Memory for layer error

Memory for parameters

Memory for param gradients

Depends on implementation and optimizer

Memory for momentum

Memory for layer outputs

Implementation overhead (memory for convolutions, etc.)



Memory for convolutions

Several libraries implement convolutions as matrix multiplications (e.g. caffe). Approach known as 
convolution lowering

Fast (use optimized BLAS implementations) but can use a lot of memory, esp. for larger kernel sizes 
and deep conv layers
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cuDNN uses a more 
memory efficient 
method!

https://arxiv.
org/pdf/1410.0759.pdf

https://arxiv.org/pdf/1410.0759.pdf
https://arxiv.org/pdf/1410.0759.pdf
https://arxiv.org/pdf/1410.0759.pdf


Mini-batch sizes

Total memory in previous slides is for a single example.

In practice, we want to do mini-batch SGD:

● More stable gradient estimates
● Faster training on modern hardware

Size of batch is limited by model architecture, model size, and hardware memory.

May need to reduce batch size for training larger models.

This may affect convergence if gradients are too noisy. 



Gradient splitting trick

Mini-batch 1

Network

ΔWLoss 1

Loss 1

Mini-batch 2 Loss 2

ΔWLoss 2

Mini-batch 3 Loss 3

ΔWLoss 3

Loss on batch n



Estimating computational complexity

Useful to be able to estimate computational 
complexity of an architecture when designing it

Computation in deep NN is dominated by multiply-
adds in FC and conv layers.

Typically we estimate the number of FLOPs 
(multiply-adds) in the forward pass

Ignore non-linearities, dropout, and normalization 
layers (negligible cost).



Estimating computational complexity

Fully connected layer FLOPs

Easy: equal to the number of weights (ignoring 
biases) 

= #num_inputs x #num_outputs

Convolution layer FLOPs

Product of:

● Spatial width of the map
● Spatial height of the map
● Previous layer depth
● Current layer deptjh
● Kernel width
● Kernel height



Example: VGG-16

Layer H W kernel H kernel W depth repeats FLOP/s

input 224 224 1 1 3 1 0.00E+00

conv1 224 224 3 3 64 2 1.94E+09

conv2 112 112 3 3 128 2 2.77E+09

conv3 56 56 3 3 256 3 4.62E+09

conv4 28 28 3 3 512 3 4.62E+09

conv5 14 14 3 3 512 3 1.39E+09

flatten 1 1 0 0 100352 1 0.00E+00

fc6 1 1 1 1 4096 1 4.11E+08

fc7 1 1 1 1 4096 1 1.68E+07

fc8 1 1 1 1 100 1 4.10E+05

1.58E+10

Bulk of 
computation is 

here



Effective aperture size

Useful to be able to compute how far a 
convolutional node in a convnet sees:

● Size of the input pixel patch that affects a 
node’s output

● Known as the effective aperture size, 
coverage, or receptive field size

Depends on kernel size and strides from 
previous layers

● 7x7 kernel can see a 7x7 patch of the 
layer below

● Stride of 2 doubles what all layers after 
can see

Calculate recursively



Summary

Shown how to estimate memory and computational requirements of a deep neural 
network model

Very useful to be able to quickly estimate these when designing a deep NN

Effective aperture size tells us how much a conv node can see. Easy to calculate 
recursively


