Day 2 Lecture 3

Visualization
Visualization

Understand what ConvNets learn
Visualization

The development of better convnets is reduced to trial-and-error.

Visualization can help in proposing better architectures.
Visualization

- Learned weights
- Activations from data
- Representation space
- Deconvolution-based
- Optimization-based
- DeepDream
- Neural Style
Visualization

- **Learned weights**
- Activations from data
- Representation space
- Deconvolution-based
- Optimization-based
- DeepDream
- Neural Style
Visualize Learned Weights

Filters are only interpretable on the first layer
Visualize Learned Weights

layer 2 weights

layer 3 weights

Source: ConvnetJS
Visualization

- Learned weights
- **Activations from data**
- Representation space
- Deconvolution-based
- Optimization-based
- DeepDream
- Neural Style
Visualize Activations

Visualize image patches that maximally activate a neuron

Figure 4: Top regions for six pool\(5\) units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts, such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).

Girshick et al. Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR 2014
Visualize Activations

Occlusion experiments

1. Iteratively forward the same image through the network, occluding a different region at a time.
2. Keep track of the probability of the correct class w.r.t. the position of the occluder

Zeiler and Fergus. Visualizing and Understanding Convolutional Networks. ECCV 2015
Visualization

- Learned weights
- Activations from data
- **Representation space**
- Deconvolution-based
- Optimization-based
- DeepDream
- Neural Style
Visualize Representation Space: t-SNE

Extract fc7 as the 4096-dimensional code for each image
Visualize Representation Space: t-SNE

Embed high dimensional data points (i.e. feature codes) so that pairwise distances are conserved in local neighborhoods.

Visualize Representation Space: t-SNE

t-SNE on fc7 features from AlexNet. Source: http://cs.stanford.edu/people/karpathy/cnnembed/

t-SNE implementation on scikit-learn
Visualization

- Learned weights
- Activations from data
- Representation space
- **Deconvolution-based**
- Optimization-based
- DeepDream
- Neural Style
Deconvolution approach

Visualize the part of an image that mostly activates a neuron

1. Forward image up to the desired layer (e.g. conv5)
2. Set all gradients to 0
3. Set gradient for the neuron we are interested in to 1
4. Backpropagate to get reconstructed image (gradient on the image)
Deconvolution approach

1. Forward image up to the desired layer (e.g. conv5)
2. Set all gradients to 0
3. Set gradient for the neuron we are interested in to 1
4. Backpropagate to get reconstructed image (gradient on the image)

Guided backprop: Only positive gradients are back-propagated. Generates cleaner results.

Deconvolution approach

Visualization

- Learned weights
- Activations from data
- Representation space
- Deconvolution-based
- **Optimization-based**
- DeepDream
- Neural Style
Optimization approach

Obtain the image that maximizes a class score

1. Forward random image
2. Set the gradient of the scores vector to be \([0,0,0\ldots,1,\ldots,0,0]\)
3. Backprop (w/ L2 regularization)
4. Update image
5. Repeat

Optimization approach

Optimization approach

Deep Visualization Toolbox

http://yosinski.com/deepvis

Optimization & Deconv-based visualizations
Visualization

- Learned weights
- Activations from data
- Representation space
- Deconvolution-based
- Optimization-based
- DeepDream
- Neural Style
DeepDream

https://github.com/google/deepdream
DeepDream

1. Forward image up to some layer (e.g. conv5)
2. Set the gradients to equal the activations on that layer
3. Backprop (with regularization)
4. Update the image
5. Repeat
DeepDream

1. Forward image up to some layer (e.g. conv5)
2. **Set the gradients to equal the activations on that layer**
3. Backprop (with regularization)
4. Update the image
5. Repeat

At each iteration, the image is updated to boost all features that activated in that layer in the forward pass.
DeepDream

More examples [here](#)
Visualization

● Learned weights
● Activations from data
● Representation space
● Deconvolution-based
● Optimization-based
● DeepDream
● Neural Style
Neural Style

Gatys et al. A neural algorithm of artistic style. 2015
Neural Style

Extract raw activations in all layers. These activations will represent the contents of the image.

Gatys et al. A neural algorithm of artistic style. 2015
Neural Style

- Activations are also extracted from the style image for all layers.
- Instead of the raw activations, gram matrices \(G \) are computed at each layer to represent the style.

E.g. at conv5 \([13 \times 13 \times 256]\), reshape to:

\[
V = \begin{bmatrix}
169 \\
\vdots \\
256 \\
\end{bmatrix}
\]

\[
G = V^T V
\]

The Gram matrix \(G \) gives the correlations between filter responses.
Neural Style

\[\mathcal{L}_{total}(\vec{p}, \vec{a}, \vec{x}) = \alpha \mathcal{L}_{content}(\vec{p}, \vec{x}) + \beta \mathcal{L}_{style}(\vec{a}, \vec{x}) \]

Match activations from content image

Match gram matrices from style image

Neural Style

$$L_{total}(\overline{p}, \overline{a}, \overline{x}) = \alpha L_{content}(\overline{p}, \overline{x}) + \beta L_{style}(\overline{a}, \overline{x})$$

Match activations from content image

Match gram matrices from style image

Neural Style

Visualization

- Learned weights
- Activations from data
- Representation space
- Deconvolution-based
- Optimization-based
- DeepDream
- Neural Style
Resources

- Related Lecture from CS231n @ Stanford [slides][video]
- ConvnetJS
- t-SNE visualization of CNN codes
- t-SNE implementation on scikit-learn
- Deepvis toolbox
- DrawNet from MIT: Visualize strong activations & connections between units
- 3D Visualization of a Convolutional Neural Network
- NeuralStyle:
 - Torch implementation
 - Deepart.io: Upload image, choose style, (wait), download new image with style :)
- Keras examples:
 - Optimization-based visualization Example in Keras
 - DeepDream in Keras
 - NeuralStyle in Keras