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Semi-supervised and transfer learning

Myth: you can’t do deep learning unless you have a million labelled examples for
your problem.

Reality

e You can learn useful representations from unlabelled data

e You can transfer learned representations from a related task

e You can train on a nearby surrogate objective for which it is easy to
generate labels



Transfer learning: idea

Instead of training a deep network from scratch for your task:

e Take a network trained on a different domain for a different source task
e Adapt it for your domain and your target task

This lecture will talk about how to do this.
Variations:

e Same domain, different task
e Different domain, same task



Transfer learning: idea
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Example: PASCAL VOC 2007

Standard classification benchmark, 20 classes, ~10K images, 50% train, 50% test

Deep networks can have many parameters (e.g. 60M in Alexnet)

Direct training (from scratch) using only 5K training images can be problematic. Model overfits.
How can we use deep networks in this setting?
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“Off-the-shelf”

Idea: use outputs of one or more layers of a network trained on a different task as

generic feature detectors. Train a new shallow model on these features.
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Off-the-shelf features

Works surprisingly well in practice!

Surpassed or on par with state-of-the-art in several tasks ~_Method i |
; HSV [27] 43.0
in 2014 SIFT internal [27] 55.1
SIFT boundary [77] 32.0
Image classification: HOG [27] 49.6
HSV+SIFTi+SIFTb+HOG(MKL) [27] 72.8
e  Oxford flowers SPM(4000) [ 1] 67.4
: FLH(100) [14] 787
° CUB. Bird dataset BiCos seg [7] 79.4
® MIT indoors Dense HOG+Coding+Pooling[”] w/o seg 76.7
Seg+Dense HOG+Coding+Pooling[”] 80.7
Image retrieval: CNN-SVM w/o seg 74.7
e Paris 6k CNNaug-SVM w/o seg 86.8

e Holidays

. UKBench Oxford 102 flowers dataset

Razavian et al, CNN Features off-the-shelf: an Astounding Baseline for Recognition, CVPRW 2014 http://arxiv.org/abs/1403.6382



http://arxiv.org/abs/1403.6382

Can we do better than off the shelf features?

Domain adaptation



Fine-tuning: supervised domain adaptation

Train deep net on “nearby” task for which it is
easy to get labels using standard backprop

e E.g. ImageNet classification
e Pseudo classes from augmented data
e Slow feature learning, ego-motion

Cut off top layer(s) of network and replace with
supervised objective for target domain

Fine-tune network using backprop with labels
for target domain until validation loss starts to
increase
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Freeze or fine-tune?

Bottom n layers can be frozen or fine tuned.

e Frozen: not updated during backprop
e Fine-tuned: updated during backprop

Which to do depends on target task:

e Freeze: target task labels are scarce, and
we want to avoid overfitting

e Fine-tune: target task labels are more
plentiful

In general, we can set learning rates to be
different for each layer to find a tradeoff between
freezing and fine tuning
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How transferable are features?
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Yosinki et al. How transferable are features in deep neural networks. NIPS 2014. https://arxiv.org/abs/1411.1792



https://arxiv.org/abs/1411.1792
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Unsupervised domain adaptation

Also possible to do domain adaptation without labels in target set.
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Y Ganin and V Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML 2015 https://arxiv.org/abs/1409.7495
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https://arxiv.org/abs/1409.7495

Unsupervised domain adaptation

MNIST SYN NUMBERS SVHN SYN SIGNS

]
SOURCE ,E 8 i 0
e ERANA 41875 @y
- I
MNIST-M SVHN MNIST GTSRB
SOURCE MNIST SYN NUMBERS SVHN SYN SIGNS
METHOD
TARGET MNIST-M SVHN MNIST GTSRB
SOURCE ONLY HT749 8665 5919 7400
SA (FERNANDO ET AL., 2013) | .6078 (7.9%) 8672 (1.3%) 6157 (5.9%) 7635 (9.1%)
PROPOSED APPROACH 8149 (57.9%) .9048 (66.1%) .7107 (29.3%) .8866 (56.7%)
TRAIN ON TARGET 9891 9244 9951 9987

Y Ganin and V Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML 2015 https://arxiv.org/abs/1409.7495



https://arxiv.org/abs/1409.7495

Summary

Possible to train very large models on small data by using transfer learning and
domain adaptation

Off the shelf features work very well in various domains and tasks

Lower layers of network contain very generic features, higher layers more task
specific features

Supervised domain adaptation via fine tuning almost always improves
performance

Possible to do unsupervised domain adaptation by matching feature distributions



