
Optimizing deep 
networks

Day 3 Lecture 3



Convex optimization

A function is convex if for all α ∈ [0,1]:

Examples
● Quadratics
● 2-norms

Properties
● Local minimum is global minimum

x

f(x)

Tangent 
line



Gradient descent

E.g. linear regression

Need to optimize L

Gradient descent

w

L

Tangent lineLoss 
function

wt

wt+1



Stochastic gradient descent

● Computing the gradient for the full dataset at each step is slow
○ Especially if the dataset is large

● Note:
○ For many loss functions we care about, the gradient is the average over losses on individual 

examples

● Idea:
○ Pick a single random training example
○ Estimate a (noisy) loss on this single training example (the stochastic gradient)
○ Compute gradient wrt. this loss
○ Take a step of gradient descent using the estimated loss



Non-convex optimization

Objective function in deep networks is 
non-convex

● May be many local minima
● Plateaus: flat regions
● Saddle points

Q: Why does SGD seem to work so well 
for optimizing these complex non-convex 
functions??

x

f(x)



Local minima

Q: Why doesn’t SGD get stuck at local 
minima?

A: It does.

But:

● Theory and experiments suggest that for 
high dimensional deep models, value of loss 
function at most local minima is close to 
value of loss function at global minimum.

Most local minima are good local minima!

Choromanska et al. The loss surfaces of multilayer networks, AISTATS 2015 http://arxiv.org/abs/1412.0233 

Value of local minima found by running SGD for 200 
iterations on a simplified version of MNIST from different 

initial starting points. As number of parameters increases, 
local minima tend to cluster more tightly.

http://arxiv.org/abs/1412.0233


Saddle points

Q: Are there many saddle points in high-
dimensional loss functions? 

A: Local minima dominate in low dimensions, but 
saddle points dominate in high dimensions.

Why?

Eigenvalues of the Hessian matrix

Intuition
Random matrix theory: P(eigenvalue > 0) ~ 0.5

At a critical point (zero grad) N dimensions means 
we need N positive eigenvalues to be local min. 

As N grows it becomes exponentially unlikely to 
randomly pick all eigenvalues to be positive or 
negative, and therefore most critical points are 
saddle points.

Dauphin et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. NIPS 2014 
http://arxiv.org/abs/1406.2572 

http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1406.2572


Saddle points

Q: Does SGD get stuck at saddle points?

A: No, not really

Gradient descent is initially attracted to saddle points, 
but unless it hits the critical point exactly, it will be 
repelled when close.

Hitting critical point exactly is unlikely: estimated 
gradient of loss is stochastic

Warning: Newton’s method works poorly for neural 
nets as it is attracted to saddle points 

SGD tends to oscillate between slowly approaching a saddle 
point and quickly escaping from it



Plateaus

Regions of the weight space where loss 
function is mostly flat (small gradients).

Can sometimes be avoided using:

● Careful initialization
● Non-saturating transfer functions
● Dynamic gradient scaling
● Network design
● Loss function design



Learning rates and initialization



Choosing the learning rate

For most first order optimization methods, we 
need to choose a learning rate (aka step size)

● Too large: overshoots local minimum, loss increases
● Too small: makes very slow progress, can get stuck
● Good learning rate: makes steady progress toward 

local minimum

Usually want a higher learning rate at the start 
and a lower one later on.

Common strategy in practice: 

● Start off with a high LR (like 0.1 - 0.001), 
● Run for several epochs (1 - 10)
● Decrease LR by multiplying a constant factor (0.1 - 0.5) w

L

Loss

w
t

α too large

Good α α too 
small



Weight initialization

Need to pick a starting point for gradient 
descent: an initial set of weights

Zero is a very bad idea!
● Zero is a critical point
● Error signal will not propagate
● Gradients will be zero: no progress

Constant value also bad idea:
● Need to break symmetry

Use small random values:
● E.g. zero mean Gaussian noise with constant 

variance

Ideally we want inputs to activation functions (e.
g. sigmoid, tanh, ReLU) to be mostly in the 
linear area to allow larger gradients to 
propagate and converge faster.

0

tanh

Small 
gradient

Large 
gradient

bad good



Batch normalization

As learning progresses, the distribution of layer 
inputs changes due to parameter updates.

This can result in most inputs being in the 
nonlinear regime of the activation function and 
slow down learning.

Batch normalization is a technique to reduce this 
effect.

Works by re-normalizing layer inputs to have 
zero mean and unit standard deviation with 
respect to running batch estimates.

Also adds a learnable scale and bias term to 
allow the network to still use the nonlinearity.

Usually allows much higher learning rates!

conv/fc

ReLU

Batch Normalization

no bias!

Ioffe and Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, JMRL 2015 https://arxiv.
org/abs/1502.03167 

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167


First-order optimization algorithms
(SGD bells and whistles)



Vanilla mini-batch SGD

Evaluated on a mini-batch



Momentum

2x memory for parameters!



Nesterov accelerated gradient (NAG)

Approximate what the parameters will be on the next time step by using the 
current velocity. 

Update the velocity using gradient where we predict we will be, instead of where 
we are now.

What we expect the 
parameters to be based on 
momentum aloneNesterov, Y. (1983). A method for unconstrained convex minimization problem 

with the rate of convergence o(1/k2). 



Adagrad

Adapts the learning rate for each of the parameters based on sizes of previous 
updates.

● Scales updates to be larger for parameters that are updated less
● Scales updates to be smaller for parameters that are updated more

Store sum of squares of gradients so far in diagonal of matrix Gt

Gradient of loss at 
timestep i

Update rule:

Duchi et al. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. JMRL 2011



RMSProp

Modification of Adagrad to address aggressively decaying learning rate.

Instead of storing sum of squares of gradient over all time steps so far, use a 
decayed moving average of sum of squares of gradients

Update rule:

Geoff Hinton, Unpublished



Adam

Combines momentum and RMSProp

Keep decaying average of both first-order moment of gradient (momentum) and 
second-order moment (like RMSProp)

Update rule:

First-order:

Second-order:

3x memory!

Kingma et al. Adam: a Method for Stochastic Optimization. ICLR 2015



Images credit: Alec Radford.

https://twitter.com/alecrad


Images credit: Alec Radford.

https://twitter.com/alecrad


Summary

Non-convex optimization means local minima and saddle points

In high dimensions, there are many more saddle points than local optima

Saddle points attract, but usually SGD can escape

Choosing a good learning rate is critical

Weight initialization is key to ensuring gradients propagate nicely (also batch 
normalization)

Several SGD extensions that can help improve convergence


