SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayrol Xavier Giro-i-Nieto
Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O’Connor Jordi Torres Elisa Sayrol Xavier Giro-i-Nieto

A joint collaboration between:

logo-insight logo-dcu logo-microsoft logo-bsc logo-gpi
Insight Centre for Data Analytics Dublin City University (DCU) Microsoft Barcelona Supercomputing Center UPC Image Processing Group

Abstract

We introduce SalGAN, a deep convolutional neural network for visual saliency prediction trained with adversarial examples. The first stage of the network consists of a generator model whose weights are learned by back-propagation computed from a binary cross entropy (BCE) loss over downsampled versions of the saliency maps. The resulting prediction is processed by a discriminator network trained to solve a binary classification task between the saliency maps generated by the generative stage and the ground truth ones. Our experiments show how adversarial training allows reaching state-of-the-art performance across different metrics when combined with a widely-used loss function like BCE.

Slides

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks from Xavier Giro

Publication

Find the pre-print version of our work on arXiv.

Image of the paper

Please cite with the following Bibtex code:

@InProceedings{Pan_2017_SalGAN,
author = {Pan, Junting and Canton, Cristian and McGuinness, Kevin and O'Connor, Noel E. and Torres, Jordi and Sayrol, Elisa and Giro-i-Nieto, Xavier and},
title = {SalGAN: Visual Saliency Prediction with Generative Adversarial Networks},
booktitle = {arXiv},
month = {January},
year = {2017}
}

You may also want to refer to our publication with the more human-friendly Chicago style:

Junting Pan, Cristian Canton, Kevin McGuinness, Noel E. O’Connor, Jordi Torres, Elisa Sayrol and Xavier Giro-i-Nieto. “SalGAN: Visual Saliency Prediction with Generative Adversarial Networks.” arXiv. 2017.

Models

The SalGAN presented in our work can be downloaded from the links provided below the figure:

SalGAN Architecture architecture-fig

Visual Results

Qualitative saliency predictions

Datasets

Training

As explained in our paper, our networks were trained on the training and validation data provided by SALICON.

Test

Two different dataset were used for test: * Test partition of SALICON dataset. * MIT300.

Software frameworks

Our paper presents two convolutional neural networks, one correspends to the Generator (Saliency Prediction Network) and the another is the Discriminator for the adversarial training. To compute saliency maps only the Generator is needed.

SalGAN on Lasagne

SalGAN is implemented in Lasagne, which at its time is developed over Theano. pip install -r https://github.com/imatge-upc/saliency-salgan-2017/blob/junting/requirements.txt

Usage

To train our model from scrath you need to run the following command: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32,lib.cnmem=1,optimizer_including=cudnn python 02-train.py In order to run the test script to predict saliency maps, you can run the following command after specifying the path to you images and the path to the output saliency maps: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32,lib.cnmem=1,optimizer_including=cudnn python 03-predict.py With the provided model weights you should obtain the follwing result:

| Image Stimuli | Saliency Map | |:-:|:-:|

Download the pretrained VGG-16 weights from: vgg16.pkl

Acknowledgements

We would like to especially thank Albert Gil Moreno and Josep Pujal from our technical support team at the Image Processing Group at the UPC.

AlbertGil-photo JosepPujal-photo
Albert Gil Josep Pujal
   
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GeoForce GTX Titan Z and Titan X used in this work. logo-nvidia
The Image ProcessingGroup at the UPC is a SGR14 Consolidated Research Group recognized and sponsored by the Catalan Government (Generalitat de Catalunya) through its AGAUR office. logo-catalonia
This work has been developed in the framework of the projects BigGraph TEC2013-43935-R and Malegra TEC2016-75976-R, funded by the Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund (ERDF). logo-spain
This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under grant number SFI/12/RC/2289. logo-ireland

Contact

If you have any general doubt about our work or code which may be of interest for other researchers, please use the public issues section on this github repo. Alternatively, drop us an e-mail at xavier.giro@upc.edu.