DEEP LEARNING FOR COMPUTER VISION

Summer Seminar UPC TelecomBCN, 4 - 8 July 2016

Instructors

Giró-i-Nieto

Kevin

McGuinness

Organizers

+ info: TelecomBCN.DeepLearning.Barcelona

Day 2 Lecture 2

Augmentation

Introduction

ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky A., 2012

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) **1.2 million training images**, 50,000 validation images, and 150,000 testing images

Architecture of 5 convolutional + 3 fully connected = **60 million parameters** ~ **650.000 neurons**.

• Reduce network capacity

dense dense densé 128 Max pooling Max pooling Max pooling

• Dropout

• Data augmentation

• Reduce network capacity

1% of total parameters (884K). Decrease in performance

• Data augmentation

• Reduce network capacity

• Dropout

37M, 16M, 4M parametes!! (fc6,fc7,fc8)

• Data augmentation

• Reduce network capacity

• Dropout

(a) Standard Neural Net (b) After applying dropout.

• Data augmentation

Every forward pass, network slightly different. Reduce co-adaptation between neurons More robust features

More interations for convergence

Reduce network capacity •

Dropout

Data augmentation

a. No augmentation (= 1 image)

b. Flip augmentation (= 2 images)

c. Crop+Flip augmentation (= 10 images)

224x224

_____b

+ flips

Data Augmentation

During training, alterate the input image (Krizhevsky A., 2012)

- Random crops on the original image
- Translations
- Horitzontal reflections
- Increases size of training x2048
- On-the-fly augmentation

During testing

- Average prediction of image augmented by the four corner patches and the center patch + flipped image. (10 augmentations of the image)

Data Augmentation

Alternate intensities RGB channels intensities

PCA on the set of RGB pixel throughout the ImageNet training set. To each training image, add multiples of the found principal components

$$I_{xy} = \begin{bmatrix} I_{xy}^R, & I_{xy}^G, & I_{xy}^B \end{bmatrix}^T$$

 $[\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3][\alpha_1 \lambda_1, \alpha_2 \lambda_2, \alpha_3 \lambda_3]^T$ $\alpha_i \sim N(0, \ 0.1)$

Object identity should be invariant to changes of illumination

<u>Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks</u>, Dosovitskiy, A., 2014

MOTIVATION

- Large datasets of training data
- Local descriptors should be invariant transformations (rotation, translation, scale, etc)

WHAT THEY DO

- Training a CNN to generate local representation by optimising a surrogate classification task
- Task does NOT require labeled data

Generate augmented dataset: 16000 classes of 150 examples each

Class k=1, with 150 examples

Select *random* location k and crop 32x32 window (restrictions: region must contain objects or part of the object: high amount of gradients)

Apply a transformation [translation, rotation, scalig, RGB modification, contrast modification]

Generate augmented dataset: 16000 classes of 150 examples each

Example of classes

Example of examples for one class

Classification accuracies

Algorithm	STL-10	CIFAR-10(400)	CIFAR-10	Caltech-101	Caltech-256(30)	#features
Convolutional K-means Network [33]	60.1 ± 1	70.7 ± 0.7	82.0	<u></u> 0	_	8000
Multi-way local pooling [34]				77.3 ± 0.6	41.7	1024×64
Slowness on videos [14]	61.0		—	74.6	—	556
Hierarchical Matching Pursuit (HMP) [35]	64.5 ± 1	<u> </u>		<u></u>	—	1000
Multipath HMP [36]	5. 			82.5 ± 0.5	50.7	5000
View-Invariant K-means [16]	63.7	72.6 ± 0.7	81.9		—	6400
Ex-CNN Small (64c5-64c5-128f)	67.1 ± 0.2	69.7 ± 0.3	76.5	$79.8\pm0.5^*$	42.4 ± 0.3	256
Ex-CNN Medium (64c5-128c5-256c5-512f)	72.8 ± 0.4	75.4 ± 0.2	82.2	$86.1\pm0.5^{\dagger}$	51.2 ± 0.2	960
Ex-CNN Large (92c5-256c5-512c5-1024f)	74.2 ± 0.4	76.6 ± 0.2	84.3	$87.1 \pm 0.7^{\ddagger}$	53.6 ± 0.2	1884
Supervised state of the art	70.1[37]		92.0 [38]	91.44 [39]	70.6 [2]	

Superior performance to SIFT for image matching.

Summary

Augmentation helps to prevent overfitting

It makes network invariant to certain transformations: translations, flip, etc

Can be done on-the-fly

Can be used to learn image representations when no label datasets are available.