Instructor
Amaia Salvador (AS) |
Slides
Related Work & Resources
-
Zeiler, Matthew D., and Rob Fergus. “Visualizing and understanding convolutional networks.” In Computer vision–ECCV 2014, pp. 818-833. Springer International Publishing, 2014.
-
Yosinski, Jason, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. “Understanding neural networks through deep visualization.” International Conference on Machine Learning, ICML (2015).
-
Accepted papers at the ICML Visualization Workshop 2016.
-
Zintgraf, Luisa M., Taco S. Cohen, and Max Welling. “A new method to visualize deep neural networks.” arXiv preprint arXiv:1603.02518 (2016).
-
Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba. Learning Deep Features for Discriminative Localization, CVPR 2016. (Slides by Marc Bolaños)
-
Gregoire Montavon, Sebastian Bach, Alexander Binder, Wojciech Samek, Klaus-Robert Muller, “Deep Taylor Decomposition of Neural Networks”. ICML 2016 Visualization Workshop. [project page]
-
Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, Stan Sclaroff, “Top-down Neural Attention by Excitation Backprop”. ECCV 2016. [arxiv][code]
-
Antonio Torralba et al, DrawNet online demo.
-
Andrej Karpathy et al, ConvNetJS, deep learning in your browser.
-
Montavon, Grégoire, Sebastian Bach, Alexander Binder, Wojciech Samek, and Klaus-Robert Müller. “Explaining nonlinear classification decisions with deep taylor decomposition.” arXiv preprint arXiv:1512.02479 (2015). Demo
-
Quiver, Interactive deep convolutional networks features visualization. 2016.